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Why importance sampling?

More samples where we have more information
Useful for:

(@)

(@)

Monte Carlo methods

Selecting similar data to provided one
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Why importance sampling?

e More samples where we have more information

e Useful for:

o Monte Carlo methods
o Selecting similar data to provided one
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How we sample?

e Cumulative Distribution Function
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How we sample?

e Cumulative Distribution Function

o  What if we don’t know the function?
o  What if the CDF is not analytic??
o Maybe it's too complex???



How we sample?

e Cumulative Distribution Function

e Piecewise-Constant Distribution (see related links)
o Binary search
o Expensive



Normalizing flows

e \We know a nice an easy function with nice properties
e We want to fit a complex function
e \We get the complex one as transformations of the simple function



Normalizing flows

e \We know a nice an easy function with nice properties
e We want to fit a complex function
e \We get the complex one as transformations of the simple function

z~ py(2) = N(z;0,0)

x:fg(z) =fK°°°'°f2°fl(Z)

each f is invertible (bijective)



Normalizing flows

e \We know a nice an easy function with nice properties
e We want to fit a complex function

e \We get the complex one as transformations of the simple function

5
pex) = py(f3' ()



Normalizing flows

e \We know a nice an easy function with nice properties
e We want to fit a complex function
e \We get the complex one as transformations of the simple function

FuiZ— X, Fisinvertble Change of variables formula:
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Normalizing flows
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Normalizing flows

det(J) =22—-00=4
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Normalizing flows

normallzi ng ﬂ ow

>

Z ~ py(2)

3 x=fy2) =fge...of[°fi(2)

—1

det(ag—X) }




Normalizing flows

normallzi ng ﬂ oW

o )22 Z ~ pyl(2)

x=fo2) =fgo...of°fi()

: af_
I " log py(x) = log py(z) + log det( ™ )




Normalizing flows

normallzi ng ﬂ oW

>

z ~ py(2)
Z X=fo2) =fgeo...ofp°fi(2)

: = afl-_l
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Normalizing flows

Variational Autoencoders Generative Adversarial Networks
Kingma et al., 2014 Goodfellow et al., 2014

¢ lower bound on log-likelihood (ELBO) * no log-likelihood evaluation

* approximate posterior: g,(z | x) ® no latent variable inference

—1
[

K
log py(x) = log py(z) + Z log |det 07

=1

exact log-likelihood evaluation

exact p()slcrior inference (via z :_/'*'(,\‘))



Coupling layer

{1:d :(H-lif)

X1:d = K1:d

Xgp1:p = 8&(Zgy1.p5 M(Z1.49))



Additive coupling layer

| | Xl:d = <14
"
. / “ Xd+1:D = Ld+1:D + m(zlzd)

{1:d Ld+1:D



Use cases: StyleFlow

+ lllumination + Pose - Age + Expression

+ lllumination +Gender + Expression

+Age + Eyeglasses + Gender

Source Image Projection


https://rameenabdal.github.io/StyleFlow/

Use cases: Image Generation



https://arxiv.org/abs/2210.02747

Use cases: Molecular Graphs
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https://dl.acm.org/doi/abs/10.1145/3394486.3403104

Use cases: Bayesian modeling

Pror dtrbution

PRIMER

) ook for wpates

Bayesian statistics and modelling

Rens van de Schoot®'*®, Sarah Depaoli®, Ruth King®»**, Bianca Kramer®®,
Kaspar Martens®¥, Mahlet G. Tadesse®’, Marina Vannucci®?®, Andrew Gelman?®,
Duco Veen®', Joukje Willemsen®' and Christopher Yau*'®
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https://repository.oceanbestpractices.org/handle/11329/1902

NEnv: Neural Environment Maps for Global lllumination

Samples

Ground Truth NEnv (Ours)

RGB

Samples



https://mslab.es/projects/NEnv/

NEnv: Neural Environment Maps for Global lllumination

EGSR 2023

THE 34TH EUROGRAPHICS SYMPOSIUM ON RENDERING




NEnv: Neural Environment Maps for Global lllumination




NEnv: Neural Environment Maps for Global lllumination

e Carlos Rodriguez-Pardo
o Postdoctoral researcher at Politecnico di Milano
o Previously at SEDDI and URJC
o Work in Machine Learning + Computer Vision +
Graphics



https://carlosrodriguezpardo.es/

NEnv: Neural Environment Maps for Global lllumination

e Francisco Javier Fabre
o Research Engineer at SEDDI
o Ongoing Industrial PhD at URJC
o Work in Offline Rendering + Volumetric Rendering +

Material Appearance.



https://javierfabre.com/

NEnv: Neural Environment Maps for Global lllumination

e FElena Garces

©)

©)
©)
©)

Senior Researcher & Director at SEDDI

Juan de la Cierva Fellow at URJC

Previously at Adobe Research & Technicolor R&D
Applied Machine Learning in scene reconstruction
and digitalization of fabric optics


https://www.elenagarces.es/

NEnv: Neural Environment Maps for Global lllumination

e Jorge Lopez-Moreno
o Chief Science Officer at SEDDI
o Associate professor at URJC
o Previously Adobe Research & Universidad de
Zaragoza
o Surface reconstruction, appearance models, offline
and real—-time rendering



http://www.jorg3.com/

Normalizing flows for render

What is Rendering?



Normalizing flows for render

Camera

View Ray

Light Source

Shadow Ray

Scene Object



Normalizing flows for render




Normalizing flows for render

Light is here!



Normalizing flows for render




Normalizing flows for render




Normalizing flows for render




Normalizing flows for render




Normalizing flows for render

NEnv: Neural Environment Maps for Global Illumination

Carlos Rodriguez-Pardo*'*® and Javier Fabre* '

and Elena Garces

3@ and Jorge Lopez-Moreno' >

pts
« Computing methodologies

» Neural nemvorks; Ima;

e

NEnv: Neural Environment Maps for Global lllumination

Carlos Rodriguez-Pardo*, Javier Fabre*, Elena Garces , Jorge Lopez-Moreno

e Normalizing flows to sample environment maps
e Compression network to encode RGB
e Implemented in a production path—tracer



Normalizing flows for render

Sampling and PDF Evaluation (Sec. 4) Environment Map Compression (Sec. 5)

Comepression

Sampling Flow F

PDF Evaluation

GT
-
F

c




Normalizing flows for render

( Sampling and PDF Evaluation (Sec. 4) \ Environment Map Compression (Sec. 5)

Comepression 7
- "
- :

This is a normalizing flow

Sampling Flow F

PDF Evaluation

p(9, ®)
=

GT
F




Normalizing flows for render

-

Sampling and PDF Evaluation (Sec. 4) \ Environment Map Compression (Sec. 5)

Sampling

PDF Evaluation

Flow F

p(9, ®)
=

(:’

Comepression

This is a normalizing flow

/

This is NOT a normalizing flow




Normalizing flows for render

Input to NEnv: A single HDRi map

Training time: 2 Hours per image (Nvidia RTX 3060 GPU)



Normalizing flows for render

Sampling Flow F

PDF Evaluation




Normalizing flows for render

GT PDF Linear Coupling Quadratic Spline Coupling



Normalizing flows for render

Reference NEnv

Spherical Harmonics  Spherical Gaussian RENI




Normalizing flows for render

Reference




Normalizing flows for render

Reference

- Feg =
v - - W v g

Reference PDF PDF(-XL




Normalizing flows for render

Environment Map __GT Render




Normalizing flows for render




Normalizing flows for render

NENV




Normalizing flows for render




Normalizing flows for render
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