
UNIVERSIDAD
REY JUAN CARLOS

COMPUTER GRAPHICS VIRTUAL

REALITY–GAMES MASTER

Academic Year 2017/2018

Master Thesis

GPU VOLUMETRIC PATH TRACING FOR

CLOTH RENDERING

Author: F. Javier Fabre Herrando
Tutors: Jorge Lopez-Moreno

Carlos Aliaga

To
my parents and sister

I

II

Acknowledgements

I would like to thank all the people who have helped since the beginning
to the end of this project.

First, thanks to Jorge, for introducing me to this awesome project. I
would also want to thank Carlos. His help and dedication has been really
valuable to me. I have not enough words to thank you two.

Thanks to all the people in Desilico Labs who have helped me. Without
your help this project would not have been possible.

Last but not least, I would like to thank my parents, my sister and my
friends, whose support and understanding during this year have been price-
less to me.

Thanks to all of you.

IV

Abstract

Over the last years, the computational capabilities of the Graphics Pro-
cessing Units (GPUs) have increased drastically. While the performance of
such hardware was progressively improving, the GPUs, traditionally used for
computer graphics applications, started to be widely used to gain efficiency
in computationally costly applications of many different disciplines out of
computer graphics.

GPUs were born in the context of computer graphics from the require-
ments of real-time rendering for videogames. However, the entertainment
industry and visual effects, which traditionally use Brute Force Monte Carlo
techniques (off–line rendering) to render photorealistic imagery, still rely on
the Central Processing Unit (CPUs), with few exceptions mostly concen-
trated in research purposes.

In this Master Thesis we propose a non–proprietary rendering engine that
fully runs on the GPU. It has the rendering capabilites of any commercial
engine, such as natural lighting and complex anisotropic materials. In ad-
dition, the engine has been designed to be specialist in rendering virtual
garments. This involves many technical implications related mainly to the
capability of running volumetric path tracing over thin, optically dense, and
highly anisotropic heterogeneous volumes. Handling such features, strongly
present in fabrics, constitute a very active and open research topic for the
off-line rendering community.

V

Contents

1 Introduction 3

2 Previous Work 7
2.1 Path Tracing implementations 7
2.2 Scattering models for cloth rendering 8

3 Path Tracing on the GPU 9
3.1 Path integral . 10
3.2 Bidirectional Scattering Distribution Function (BSDF) 15
3.3 Camera model . 16
3.4 Sampling and Reconstruction 17

3.4.1 Stratified jittered sampling 18
3.4.2 Reconstruction filter 18

3.5 Performance and Implementation Details 20
3.5.1 Acceleration Structures 20
3.5.2 Uniform Random Generation 22
3.5.3 State Saving . 23

4 Materials 25
4.1 Diffuse material . 25
4.2 Disney principled BRDF . 26

4.2.1 Importance Sampling 28
4.3 Measured Materials . 29

5 Volumetric Path Tracing 31
5.1 Volume Scattering Processes 31

5.1.1 Emission . 32
5.1.2 Absorption . 32
5.1.3 Scattering . 33

5.2 Equation of Transfer . 35
5.3 Phase Function . 37

1

Contents

5.4 Homogeneous media . 38
5.4.1 Sampling homogeneous media 38

5.5 Heterogeneous media . 39
5.5.1 Sampling Heterogeneous Media 40

5.6 Performance and Implementation Details 41
5.6.1 Memory scheduling . 42
5.6.2 Medium improvements 43
5.6.3 GPU grid implementation 44

6 Volumetric Materials: Cloth 45
6.1 Cloth Volumes . 45
6.2 Light Scattering for Textile Fibers 46

7 Results 49
7.1 Disney BSDF . 49
7.2 Measured materials . 53
7.3 Cloth materials . 53
7.4 Full garments . 54

8 Conclusions and Future Work 61
8.1 Improved woodcock tracking 61
8.2 Correlated media . 62
8.3 Improved scheduling algorithms 63
8.4 Improve lighting . 63
8.5 Conclusions . 64

Bibliography 68

2

Chapter 1

Introduction

Computer graphics imagery are ubiquitous in everyday life for a wide
range of applications, from entertainment industry to marketing or industrial
design, to name a few. When aiming for photo–realism, Brute Force Monte
Carlo Path Tracing has proven to be a very effective method to generate out-
standing images, accounting for complex lighting and material effects, since
it relies on ray optics to simulate the light propagation in the scene. That
is, it accounts for the trajectories of photons interacting with the surfaces
present in the scene, what is known as global illumination.

(a) Clouds (b) Fire (c) Smoke

Figure 1.1: Examples of participating media in the real world.

However, most of the materials in nature do not behave like surfaces. In
addition to canonic examples like smoke, fog or clouds, there are other com-
mon materials like wax, skin or cloth that present volumetric behaviors at
different scales (Figure 1.1). These materials, usually known as participating
media, have a common nature: they all are based on aggregates of smaller
components or particles that interact with light. The way light interacts with
the media ultimately depends on the optical properties of the material, like
its optical thickness or its absorption and light scattering patterns. All these
features will be further explained in Section 5.1. In the case of cloth, the
overall appearance is ultimately defined by the smallest components, which

3

Chapter 1. Introduction

are the textile fibers.

Then, the original Path Tracing Algorithm is enhanced to handle partic-
ipating media, in a method known as Volumetric Path Tracing (see Section
5). In order to make the problem tractable, a bunch of particles (fibers in
our case of cloth) is treated as an statistical aggregate, by discretizing the
media in 3D cubes (voxels) that store structural and/or optical properties of
the material. Thus, in this Master Thesis we propose practical solutions to
several problems. Namely:

• We propose a cross-platform architecture for path tracing in the GPU
based on OpenGL Shading Language (GLSL). We discuss about typical
CPU structures could be adapted to be implemented in GPU architec-
tures and how GPU limitations affects this kind of algorithms.

• We propose a solution to produce photo–realistic renderings of cloth
using Volumetric Path Tracing in the GPU. This constitutes a very
hard problem to solve, since we need to handle very thin, optically-
dense, heterogeneous participating media that might also present very
anisotropic patterns of interaction with light.

• We propose a fiber scattering function that accurately reproduces the
optical behavior of textile fibers, together with efficient importance
sampling techniques to allow renderings.

• We propose a new screen–space optimization to reduce memory re-
quirement when rendering volumetric media. We discuss how this op-
timization could be implemented using GLSL to avoid GPU memory
limitations when rendering high resolution cloth models.

This document is structured as follows: In Chapter 2, we will review
the main path tracing implementations used in research environments, some
suitable render algorithms already implemented in the GPU, and the state
of the art in light scattering models for cloth.

Chapter 3 explain the main mathematical theory behind our path trac-
ing implementation as well as the technical details and implemented improve-
ments. A complete explanation of the non–volumetric materials implemented
is exposed in Chapter 4.

Chapters 5 and 6 cover our main contribution, explaining the full vol-
umetric path tracing implementation on the GPU and also the particular

4

features of our cloth model.

Lastly, in Chapters 7 and 8, we show the results of the current state of
the engine and discuss future avenues of work.

5

Chapter 1. Introduction

6

Chapter 2

Previous Work

2.1 Path Tracing implementations

To generate realistic renders of scenes including volumetric materials,
centering our research in cloth materials represented using volumetric data,
we have decided to implement Volumetric Path Tracing algorithm.

Among CPU implementations, two of the most renowned are the offline–
renderer implementation given with the book Physically Based Rendering
from theory to implementation [Pharr et al., 2016] (know as PBRT) and the
rendering engine Mitsuba [Jakob, 2010].

PBRT has its full implementation of many render algorithms, includ-
ing path tracing. All the source code explained in the book is available in
the website of the book, allowing access to even a volumetric path tracing
implementation supporting Heterogeneous media. Also many of the algo-
rithms implemented support some kind of CPU parallelization techniques.
However, PBRT does not implement specific phase functions modeling cloth
fiber, although is possible to extend some of the phase function model al-
ready implemented to achieve some of the phase function that allow realistic
cloth renderings.

Mitsuba implements a set of complex offline–render algorithms, including
volumetric path tracing. Mitsuba also implements phase functions emulating
cloth fibers using the Microflakes models presented by Jakob et al. [2010],
and other implementations of fiber models [Khungurn et al., 2015, Aliaga
et al., 2017] have been implemented over this render engine.

Mitsuba gives support, not only to thread parallelization, but also to
clusterization, making this rendering engine one of favorites in the research

7

Chapter 2. Previous Work

community. Unfortunately, none of this render engines support the use of
GPUs to improve the performance of their offline–renders.

In the field of GPU Path Tracing implementations, less research has been
made. Parker et al. [2010] implemented a full ray tracing engine on GPU, and
many improvements have been made to their orginal work (developing the
actual OptiX engine). However the implementation of this engine is made in
CUDA, preventing it from running in AMD GPUs.

Although is not a Path Tracer implementation, Hachisuka [2015] imple-
ments a Photon Mapper using OpenGL [Khronos Group, 1992] and GLSL,
which allows his implementation to run almost every GPU from the last
decade. As far as Volumetric Path Tracing is concerned, all of the known
methods presented in the literature lack a full GPU implementation.

In this work, we aim to develop and implement a full implementation of
the Volumetric Path Tracing algorithm using OpenGL and GLSL languages,
allowing our software to run in any kind of GPU.

2.2 Scattering models for cloth rendering

Previous approaches have used a variety of scattering models that go
from microflakes [Jakob et al., 2010, Heitz et al., 2015] to fiber scattering
models similar to previous hair rendering models [Kajiya and Kay, 1989,
Marschner et al., 2003, Zinke and Weber, 2007, Yan et al., 2015]. However,
fiber scattering models have shown to match real–world cloth appearance,
while microflakes models fail in this task.

Following this idea Schröder and colleagues [citas] proposed to use a para-
metric BCSDF. Khungurn et al. [2015] proposed a fiber–based model (with
some limitations) based on cylindrical fibers.

Later, Aliaga et al. [2017], presented a more complete model which aims
to simulate the different shaped fibers instead of only cylinder, actually based
on parameters used in the textile industry.

In this Master Thesis, we focus in the model presented by Khungurn et al.
[2015] and aim to overcome some of its limitations by improving their actual
scattering model.

8

Chapter 3

Path Tracing on the GPU

In a photograph, the value of each pixel is the result of the radiance
reaching the sensor at that point, as a result of the integration of photons
interacting with the media and bouncing in the scene. This is known as
global illumination, and simulating such effects turns out to be crucial to
produce accurate photo–realistic results (Figure 3.1).

(a) Local illumination (b) Global illumination

Figure 3.1: Comparative of the same scene rendered using only direct illu-
mination (no light bounces) and taking into account global illumination.

Since Kajiya Kajiya [1986] proposed the Rendering Equation (or Light
Transport Equation), many methods have been introduced in order solve it.
Path tracing was developed in order to provide a numerical method to solve
this problem by simulating the path of photons emitted from every light in

9

Chapter 3. Path Tracing on the GPU

a scene that end up in the camera and contribute to the final image.

In this Master Thesis we will focus on Backward Path Tracing technique
(Figure 3.2). This technique assumes that, thanks to the reciprocity of the
light, we can simulate all the illumination launching the light paths from the
camera instead of generating them on the light sources.

Figure 3.2: We generate ray starting from our camera assuming the path
traveled is the same as if they were stated on the lights

3.1 Path integral

To simulate Global Illumination in a scene, we need to use the Render-
ing Equation, which is defined recursively, as we will show in the following
section. Thus, if we want to precisely render a scene we would need to com-
pute a excessive amount of recursive computations. However, [Veach, 1998,
Section 8] proposed a different formulation to explain the light propagation
phenomena. It is called Path Integral, and it reformulates the light propa-
gation phenomena as only one integral instead of the recursion presented by
the Rendering Equation.

10

3.1. Path integral

Figure 3.3: Radiance along a Ray is unchanged (if no participating media
are present)

Starting from the main LTE:

Lo(p, ωo) = Le(p, ωo) +

∫

S2

f(p, ωo, ωi)Li(p, ωi) |cos θi| dωi (3.1)

If we assume (for now) that no participating media are present, radiance
is constant along ray. Therefore, we can relate the incident radiance at p to
the outgoing radiance at any other point of the space p′ (Figure 3.3). Defining
a ray–casting function t(p, ω) as a function computing the first surface point
p′ intersected by the ray casted from p in direction ω, the incident radiance
at p can be rewritten as

Li(p, ω) = Lo(t(p, ω),−ω) (3.2)

in terms of outgoing radiance at p.

To deal with the case where the ray does not intersect any object, we
can define the ray–casting function to return a special value ∆, such as
Lo(∆, ω) = 0.

Using Equation 3.2 we can rewrite the LTE equation as (subscripts of Lo

omitted for brevity):

L(p, ωo) = Le(p, ωo) +

∫

S2

f(p, ωo, ωi)L(t(p, ωi), ωi) |cos θi| dωi (3.3)

11

Chapter 3. Path Tracing on the GPU

Figure 3.4: The three–point form of the LTE. Converts the integral from
direction over the sphere, to be over a the domain of points on surfaces.

The main reason Equation 3.3 being complex is due to the fact that the
relationship between geometry in a scene is implicit in the ray–tracing func-
tion t(p, ω). We can rewrite this equation as an integral over area instead of
an integral over direction on the sphere to make the behavior of this function
explicit in the integrand.

If we define the reflected radiance from a point p′ to the point p as:

L(p′ → p) = L(p′, ω) (3.4)

given that p′ and p are mutually and ωo = p̂—p′.

The term f(p′, ωo, ωi) or Bidirectional Scattering Distribution Function
(BSDF) (Section 3.2) at p′ can be rewritten as

f(p′′ → p′ → p) = f(p′, ωo, ωi), (3.5)

where ωi = ̂p′′—p′ and ωo = p̂—p′ as we can see in Figure 3.4.

Although we have rewritten the LTE to be over the domain of points on
surfaces in the scene, rather than over directions over the sphere, we still
need to transform it from an integral over direction to one over surface area.

12

3.1. Path integral

To do this, we need to multiply it by the Jacobian that relates solid angle to
area.

This change–of–variable term, the original |cos θ| term, and a binary vis-
ibility function V (with V = 1 if the point are mutually visible, and V = 0
otherwise) can be combined into a single geometry term:

G(p ↔ p′) = V (p ↔ p′)
|cos θ| |cos θ′|

‖p− p′‖2
. (3.6)

Substituting these equation into the LTE, and transforming it to an area
integral:

L(p′ → p) = Le(p
′ → p)+

∫

A

f(p′′ → p′ → p)L(p′′ → p′)G(p′′ ↔ p′ = dA(p′′),

(3.7)
where A represent all the surfaces in the scene.

Now with Equation 3.7, instead of sampling a number of direction on
the sphere and cast rays to evaluate the integrand (Equation 3.1), we could
choose a number of points on surfaces of the scene and compute a coupling
between those point to evaluate the integrand, tracing right so we can eval-
uate the visibility term V (p ↔ p′).

From this area integral from (Equation 3.7) we can derive the path integral
formulation, which expresses radiance as an integral over paths (points in a
high dimensional path space).

To reach this equation, we can start expanding the the three–point LTE,
substituing the right–hand side of the equation into the L(p′′ → p′) term
inside the integral. An example of the first few terms that give incidence
radiance at point p0 from another point p1 (where p1 is the first point on a
surface along the ray starting in p0 with direction p1−p0) is expressed in the
following equation:

L(p1 → p0) =Le(p1 → p0) (3.8)

+

∫

A

Le(p2 → p1)f(p2 → p1 → p0)G(p2 ↔ p1)dA(p2)

+

∫

A

∫

A

Le(p3 → p21)f(p3 → p2 → p1)G(p3 ↔ p2)

× f(p2 → p1 → p0)dA(p3)dA(p2) + ...

where each term of the right side represent a path of increasing length.

13

Chapter 3. Path Tracing on the GPU

Figure 3.5: An example of a path of length 4 starting at the camera and
ending at a light source.

The third term would de illustrated as in Figure 3.5. The total contribu-
tion of paths of length four (i.e. first vertex at the camera, 2 points at any
surface of the scene, and a last vertex on a light source) is given by this term.

Here, the first two vertices of the path, p0 and p1, are determined based
on the ray starting at the camera and the first point that it intersects, but
p2 and p3 vary over all points on surfaces in the scene. The integral over
all such p2 and p3 gives us the full contribution of paths of length four to
arriving at the camera (p0).

This infinite sum can be compacted as

L(p1 → p0) =
∞∑

n=1

P (pn). (3.9)

P (pn) gives us the amount of radiance scattered over a path pn of n + 1
vertices

pn = p0, p1, . . . , pn, (3.10)

where p0 is on the camera and pn is on a light source.

Using Equation 3.9 (with a given length n), we can compute a Monte
Carlo estimation of the radiance arriving at p0 (the camera), due to path

14

3.2. Bidirectional Scattering Distribution Function (BSDF)

of length n, sampling a set of vertices with an appropriate sampling density
and evaluate an estimate of P (pn) using those vertices.

3.2 Bidirectional Scattering Distribution Func-

tion (BSDF)

The term Bidirectional Scattering Distribution Function (BSDF) [Bartell
et al., 1981] is not well standardized. However, it is often used to name the
mathematical function describing the way the light is scattered by a sur-
face. In practice, this phenomena is usually splitted into the reflected and
the transmitted components, treated separately as Bidirectional Reflectance
Distribution Function (BRDF) and Bidirectiona Transmittance Distribution
Function (BTDF) respectively .

Figure 3.6: Example of the BRDF in a point of the space p

The BRDF function (usually written as fr(p, ωi, ωo)) models the ratio of
light reflected in a point given an incoming direction (ωi) and a outgoing di-
rection (ωo) (Figure 3.6). Parameterizing each direction by azimuth angle Φ
and zenith angle Θ we can understand the BRDF as a function of 4 variables.

Physically based BRDFs should have two important qualities:

• Reciprocity: For all pairs of directions ωi and ωo, fr(p, ωi, ωo) = fr(p, ωo, ωi)
(the value returned by the BRDF should be the same).

15

Chapter 3. Path Tracing on the GPU

• Energy conservation: The total energy of the light reflected is less
than or equal to the energy of the incident light. For all possible ωo

directions.

∫

H2(n)

fr(p, ωo, ω
′) cos θ′dω′ ≤ 1

The Bidirectional Transmittance Distribution Function (BTDF), which
describes the distribution of transmitted light, can be defined in a similar
way to that for the BRDF. Generally, the BTDF is denoted by ft(p, ωo, ωi)
where ωi and ωo are defined in the opposite hemisphere around p than the
ones in the BRDF. As an important remark, the BTDF does not obey the
reciprocity defined above for the BRDF.

Our path tracer implements different BSDF models to cover a wide range
of materials, and will be further discussed in Chapter 4.

3.3 Camera model

Our engine handles two camera models: Orthographic and Perspec-
tive. Note that all the renders shown in this document are rendered using the
Perspective camera model. The first implementation made for both cameras
supposes a pinhole camera model: a sealed box with one tiny hole allowing
light to reach the sensor.

(a) Distortion effect (b) Depth of Field effect

Figure 3.7: Different effect happening in real cameras due to the use of lens

Although this model is really simple to implement, it neglects many phe-
nomena that happens in real cameras due to lens, such as distortion (Figure
3.7a) or Depth of Field (DoF) (Figure 3.7b) effects, that occur in real camera.

16

3.4. Sampling and Reconstruction

To achieve some of these effects that add realism to the final image, we have
expanded our pinhole camera to account for the shape of the aperture (cir-
cular or polygonal with varying number of polygon sides), which naturally
adds Depth of Field and Bokeh effects. An example render showing Depth
of Field effect is shown in Figure 3.8

Figure 3.8: Standford dragon model rendered using our rendering engine
with DoF effect

3.4 Sampling and Reconstruction

The final image captured by the camera is an array of pixels / color val-
ues, as a discretization of the underlying continuous function: the irradiance
at the sensor. Thus, the way such continuous function is reconstructed from
a set of discrete samples is critical for the quality of the final rendered image.
In same way, if this process is performed wisely, we can reduce the number of
distributed samples along the image, and consequently decrease the amount
of computation needed to achieve high quality images.

To improve the sampling and reconstruction processes of our path tracer,
we have implemented a stratified jittered sampling strategy to select the
pixel real positions on camera space, and a reconstruction filter process
that allow us to select the how we reconstruct the image given the pixel
values generated by the path tracer.

17

Chapter 3. Path Tracing on the GPU

3.4.1 Stratified jittered sampling

The stratified jittered sampling strategy combines both the jittered and
stratified sampling strategies. Following the stratified sampling idea, we
subdivide the pixel area in a 4x4 grid, an using a random generated number
(Section 3.5.2), we select which one of the sub–pixels of the grid we will use
to sampling.If we would have only implemented this sampling strategy, our
final pixel position should be the center of the sub–pixel cell of the grid that
we have selected using our random number as Figure 3.9b.

Using the jittered strategy, we would generate another random numbers
to generate a uniform displacement in the pixel space coordinates. Imple-
menting the sampling process using this strategy will lead us to select pixel
positions with the pattern shown in Figure 3.9c

Finally, using with both strategies we could implement a sampling strat-
egy where we first chose a sub–pixel from a 4x4 grid using the stratified
strategy, and then we apply the jittered process in the sub–pixel space, gen-
erating the sampling pattern of Figure 3.9d.

This combined strategy is implemented in our rendering engine to gener-
ate a pixel position that we use as a starting point of the camera rays. The
stratified jittered strategy allows us to reduce the aliasing in our final image
and avoid other unwanted artifacts.

3.4.2 Reconstruction filter

To generate the final image from the radiance samples samples distributed
randomly over the image plane, we have implemented a filter structure that
allow us to implement different reconstruction filters to apply when we add
radiance samples to final image.

Due to the parallel nature of the GPU, the filter is applied each time
we generate one sample per pixel in the image, right before adding such new
pixel values to the accumulated radiance image. For this, we need to save the
real position of each pixel in camera space, which is not usually computed
in GPU applications, and use it to evaluate the filter to obtain a weight for
each sample.

18

3.4. Sampling and Reconstruction

(a) Naive sampling (b) Stratified sampling

(c) jittered sampling (d) Stratified jittered sampling

Figure 3.9: Comparison of the different sampling strategies implemented in
our path tracer

(a) Reference (b) Lanczos filter

Figure 3.10: We use Lanczos filter for reconstruction to reduce the overall
noise in our rendered scenes

In our final path tracer implementation we have developed 2 filter aside
from the box filter: Gaussian filter and Lanczos filter. After empirical
tests, we decided to use the Lanczos filter implementation using parameters

19

Chapter 3. Path Tracing on the GPU

radius = 1.2 and τ = 3. (Pharr et al. [2016] and Jakob [2010] use those as
default parameters) to generate the majority of renders shown in this Master
Thesis, because it provides the best results in practice (Figure 3.10) and it
also avoids aliasing between consecutive frames in videos.

3.5 Performance and Implementation Details

Along this section we will discuss the proposed solutions to improve the
performance of the rendering engine, as well as the most relevant implemen-
tation details, tightly related to the constraints that the GPU architecture
imposes.

3.5.1 Acceleration Structures

One of the first things to take into account when implementing Path
Tracing algorithms are acceleration structures to improve the speed of the
ray intersection routine. The main reason to do this is because each suc-
cessive interaction, with the geometry defining the scene to render, need to
know which primitive will be hited first. If we reduce the time to compute
this operation, the performance of our algorithm will dramatically increase.

Due to this, every efficient Path Tracer implements acceleration struc-
tures, which is usually some kind of tree that allows to quickly access any
3D point in the space, such as KD-trees [Jakob, 2010] or BVHs [Pharr et al.,
2016]. In particular, our Path Tracer uses a GPU efficient Bounding Volume
Hierarchies (BVH) implementation based on Hachisuka [2015] BVH for his
GLSL photon mapper, converting the typical pointer-based BVH tree struc-
ture, generated in CPU with a Surface Area Heuristic (SAH), into a flat
structure we can fit in OpenGL buffers. This allows us, both cache-friendly
access to this structure and a stackless implementation of the traversal algo-
rithm to query ray-triangle intersection into this BVH.

20

3.5. Performance and Implementation Details

(a) Example of +X face precomputation

(b) Example of −X face precomputation

Figure 3.11: Comparison of different BVH faces computation using the same
nodes. (Purple represent following node if hit was made, green if we missed
the node)

As said, our structure is basically the same as the one presented by
Hachisuka. We precompute the different exploration paths that could hap-
pen while doing the traversal in a the BVH structure after building it, and
store each next node that the algorithm would have to visit depending on
hitting the node or missing it as an explicit jump. The main change in our
implementation is that we decided to aim for a stack–less structure as the one
Pharr et al. [2016] presents, which seems more cache-friendly, while maintain-
ing a different structure for the AABB using a cache-friendly organization
only for storing the indexes we need to refer the different bounding boxes.

Hachisuka suggested to make this pre–computation for each of the differ-
ent efficient trees that we could made for each of the sides of the Axis Aligned
Bounding Box of the whole scene. We implement this idea while maintaining
our cache–friendly structure, improving the ray–primitive intersection time
without relocating the AABBs and triangle data in GPU memory, only gen-
erating the hit and miss structure per each side of the main AABB (Figure
3.11).

21

Chapter 3. Path Tracing on the GPU

3.5.2 Uniform Random Generation

Random Number Generation (RNG) is really important when dealing
with offline rendering implementations due to the continuous use of random
number to generate events and different decisions in each collision. One of
the main disadvantages of using the GPU for statistic computation is the
generation of good quality random numbers, which turns important when
implementing algorithms such as Path Tracing.

(a) Bad RNG (b) Good RNG

Figure 3.12: Comparison of the same scene with 2 different RNG algorithms

While many GPGPU applications have developed efficient pseudo-random
number generation algorithms based on sine and cosine functions, the num-
bers generated heavily depend on current clock time, and have some stochas-
tic correlation between adjacent threads, making them non desirable for Path
Tracing. Thus, higher quality number generation is needed.

In our implementation, we have developed a RNG based on cryptographic
hash [Tzeng and Wei, 2008] to generate floating point pseudo-random num-
bers. Using different random numbers generated previously in CPU as a
starting seed for each pixel computation gives us the needed variability among
pixels. It also provides enough random quality, as we need due to perform
the different random–based functions that different materials need.

In our implementation, we use the MD5 algorithm mentioned above to
generate random numbers in groups of 4 floating point numbers which are
stored for further use (integer numbers and vectors are generated using this
floating point numbers). With this preventive storage we avoid to execute
the algorithm each time we need a random number. Instead, we generate 4
numbers at once using less computational resources than the ones we would
need to perform the algorithm four times.

22

3.5. Performance and Implementation Details

Also, we have decided to implement the hashing algorithm iterating 15
times the mD5 implementation, to avoid excessive compute time, because, as
the reference papers demonstrates, the numbers generated using this amount
of iterations are good enough for our implementations. In practice, these 15
iterations are implemented unrolled to avoid further computations costs.

3.5.3 State Saving

Unlike CUDA kernels, OpenGL shaders cannot spent an unlimited time
doing computation on the GPU, since the hardware imposes time restrictions
by design, to be used in real-time graphics. Because of this limitation, not
only our implementation has to had each sample separated in different shader
executions, but also each depth step of the same path, since long paths could
spent enough computation time to cause the GPU driver to timeout, specially
when the amount of triangle primitives increase drastically.

As a result of this depth subdivision, some kind structure to preserve the
information of the path is needed, in order for the Path Tracer to continue
the path correctly in the next shader execution. The data needed to recover
the same state include:

• Ray origin.

• Ray direction.

• Accumulated luminance.

• Accumulated throughput.

• Depth of the path in last interaction.

• Last medium visited.

• Length (t) of last woodcock tracking (if not finished)

23

Chapter 3. Path Tracing on the GPU

Table 3.1: Data from one to the next shader execution, compressed in 4
GLSL vec4. [v0 . . . v3]

Scructure Size Position

Ray origin vec3 12 bytes v0.xyz
Ray direction (θ, φ) 8 bytes v1.xy
Luminance vec3 12 bytes v2.xyz
Throughput vec3 12 bytes v3.xyz
Path depth float 4 bytes v1.w
Last medium index uint 4 bytes v0.w
Length t float 4 bytes v1.z

With all this information we can recover the path as it was before the
shader finished its execution, and so generate the same result as if we ex-
ecuted the algorithm without any interruption. The memory requirement
and subdivision of this data is specified in Table 3.1. This information is
stored textures using the Image Load Store OpenGL 4 feature that allows us
to arbitrarily read from and write to texture, instead of the regular Render
Target method used in previous OpenGL versions. This reduces the need of
more shader passes to store data.

24

Chapter 4

Materials

Typically BSDFs and materials are implemented using inheritance present
in programming languages such as C++. Due to the fact that inheritance is
not possible in GLSL, we have implemented a system that allows us to refer
materials using an unique numeric ID to select the correspondent function to
be applied in each case. This allows us to have the typical structure for ma-
terials in the CPU part of our Path Tracer, while on the GPU each materials
is only represented by this unique ID that any triangle on the scene has as
a property. Using this ID we could decide the function to use whenever we
want to shade some triangle, get the output direction of the ray after hitting
some material, etc.

4.1 Diffuse material

The simplest material we have implemented is the smooth diffuse mate-
rial (also known as Lambertian), allowing to create ideally diffuse surfaces by
specifying a constant albedo value for a whole surface or a spatially varying
albedo using a RGBA texture. We have implemented a cosine-weighted im-
portance sampling for this material to improve the render time, and be able
to use Multiple Importance Sampling [Veach, 1998]. This cosine-weighted
importance sampling ends up giving us the following PDF:

PDFdiffuse(θi, θo) =
cos θo
π

(4.1)

Just like in other materials, we have implemented the possibility of use
albedo textures, so the final albedo can be calculated using both a base

25

Chapter 4. Materials

albedo and the texture value as follows:

albedo = baseAlbedo ∗ texture(UV)

Figure 4.1: Rendered image using diffuse materials varying the albedo pa-
rameter

4.2 Disney principled BRDF

One of the complex BSDF that we have implemented is the Disney BRDF
model explained by Burley and Studios [2012].This BRDF model, while not
strictly physically correct, allows an art oriented specification of the materi-
als because it uses intuitive parameters rather than physical ones.

Regarding the implementation details, Disney principled BRDF is com-
posed by 5 simple components (diffuse, subsurface, anisotropic microfacets,
clearcoat and sheen) which mixed using the weights that the model param-
eters specify create the whole material.

Diffuse component The diffuse model in this BRDF uses an empirical
model, instead of using the default Lambert or the Oren and Nayar [1994]
reflection model. This implementation reduces the diffuse reflectance by 0.5
at grazing angles for smooth surfaces, increasing the reflectance up to 2.5 for
rough surfaces. The empirical model is defined as follows:

fd(θi, θo) =
baseAlbedo

π
(1 + (FD90 − 1)F (θi))(1 + (FD90 − 1)F (θi)) (4.2)

FD90 = 0.5 + cos θ2roughness (4.3)

26

4.2. Disney principled BRDF

For the fresnel term, instead of using the full fresnel equations, the Disney
BRDF uses the Schlick [1994] appoximation, defined as:

F (θ) = (1− cos θ)5 (4.4)

Subsurface component The Disney BRDF blends between the values of
the diffuse model and a Hanrahan and Krueger [1993] based model to emulate
subsurface scattering.

Due to this model being a very limited approximation, it only works for
very short mean free paths.

Specular/Clearcoat component The specular lobe of the Disney BRDf
uses a standard microfacet model defined as:

fs(θi, θo) =
D(θi)F (θi)G(θi, θo)

4 cos θi cos θo
(4.5)

where D is the normal distribution, F is the fresnel term (Equation 4.4)
and G is the shadowing term for the normal distribution, where the Disney
BRDF uses the Generalized-Trowbridge-Reitz (GTR) [Trowbridge and Reitz,
1975]:

DGTR(θh) =
c

(α2 cos2 θh + sin2 θh)γ
(4.6)

Here, c is the normalization constant and α is the roughness value.

In the implementation, 2 specular lobes ares used, the main specular lobe
with γ = 2 and the clearcoat lobe using γ = 1.

The BRDF does not specify the IOR explicitly, instead uses the specular
parameter in the range [0..0.8] which maps to the IOR range [1..1.8]. For
the clearcoat lobe the Disney BRDF uses a fixed IOR value of 1.5, and
its strength is defined by the clearcoat parameter in range [0..0.25]. The
roughness value of the lobes is defined as α = roughness2 for the main lobe,
and α = lerp(clearcoatGLoss, 0.2, 0.001) for the clearcoat lobe. Finally, for
the shadowing term G this BRDF uses a standard smith shadowing term
[Smith, 1967], however it is modified due to artistic reasons.

27

Chapter 4. Materials

Sheen component In order to add in sheen, observed in materials such
as cloth, the following term is used:

fsheen = F (θh) · sheen · lerp(sheenT int, 1, baseAlbedo) (4.7)

4.2.1 Importance Sampling

Aside from analytic evaluation, we have implemented importance sam-
pling of this material using 3 importance sampling methods (diffuse, anisotropic
microfacet and clearcoat). This 3 methods are sampled using the following
samplable distributions:

• Cosine weighted hemisphere.

• GTR1 normal distribution.

• GTR2 normal distribution.

We select the distribution to sample taking into account the following
ratios:

w′

diffuse =
1−metallic

2
,

where metallic represents the input parameter of the BRDF in range
[0 . . . 1], and

w′

GTR2 =
1

1 + clearcoat
,

where clearcoat is also a parameter of the BRDF in range [0 . . . 1].
Here w′

diffuse represents the ratio between the diffuse component and the
2 specular lobes and w′

GTR2 the ratio between the first specular lobe and the
clearcoat lobe.

Knowing this ratio we can compute the overall ratios of the 3 lobes to take
into account when doing importance sampling and weighting the 3 PDFs as:

wdiffuse = w′

diffuse (4.8)

wGTR2 = w′

diffuse + wGTR2 − (wGTR2 · w
′

diffuse)

wGTR1 = 1− wdiffuse − wGTR2

Some example renders of different materials using this BRDF could be
seen in Figure 4.2.

28

4.3. Measured Materials

Figure 4.2: Comparison of multiple materials rendered using our implemen-
tation of the Disney principled BRDF

4.3 Measured Materials

Although in previous sections we have only talked about analytical mod-
els, another solution to represent a BRDF model is to explicit storage mea-
sured data from real materials.

Previous publications [Matusik et al., 2003, Ngan et al., 2005] have mea-
sured different real materials, and stored the data showing that is possible
to generate renderized images similar to the original materials. We have de-
cided to implement the materials measured by Matusik et al. [2003] due to
the large dataset of different materials available to use from the measurement
of their original work, including metals, plastics, different types of paints, etc.

In order to have importance sampling we calculate the tabulate CDF of
each material we plan to use, uploading it to the GPU as bindless textures
so we could perform a binary search through the data to select the proper
output direction given a random number previously generated. The original
publication found that specular peaks were difficult to represent using the
natural coordinate system (θi, θo, φdiff) even using a denser representation,
so they decided to use an alternative representation.

Due to this materials being BRDFs, and thus only being defined in the
hemisphere, they can use an alternative representation based on the angles
with respect to the half-angle of the incoming and outgoing directions, al-
lowing them to vary the sampling density near the specular highligh.

While this representation reduces the size of the dataset, it differs from
the actual coordinate system implemented in our GPU path tracer, so we
considered to transform the data to our coordinate system to simplify the
tabulated CDF construction and evaluation, but we ended using the original
representation to avoid bigger memory occupancy because, as we observed,
the main calculation overhead falls in the tabulated CDF calculation, which

29

Chapter 4. Materials

we only calculate once per material in CPU.

30

Chapter 5

Volumetric Path Tracing

In Chapter 3 we talked about Path tracing, assuming that our scenes
are made up of multiple surfaces in a perfect vacuum. This assumption
means that radiance is constant along rays between surfaces. However, in
many real–world situations this assumptions is inaccurate. Effects such as
fog, smoke and even the color of the sky cannot be explained with this as-
sumption. Due to how the light is affected as it passes through Participating
Media, many effects as the ones mentioned above are generated.

In this chapter we will expose how this process is modelled, extending our
Path Tracer model to Volumetric Path Tracer, and how we have implemented
it on the GPU.

5.1 Volume Scattering Processes

Before introducing the Equation of Transfer in Section 5.2, we must know
the different processes affecting the distribution of radiance in participating
media. These three, are processes that affect the distribution of radiance in
an environment with participating media:

• Emission: Radiance added to the environment coming from luminous
particles.

• Absorption: Radiance reduction due to light converted into another
form of energy, such as heat.

• Scattering : Radiance heading in one direction scattered to another
direction as a result of the collision with particles.

31

Chapter 5. Volumetric Path Tracing

In the following subsections, we will explain in more detail how each of
them affect the radiance of a ray traveling through a medium.

5.1.1 Emission

As we mentioned earlier, emission increases the amount of radiance along
a ray as it passes through a medium, this can be caused by chemical, thermal,
or even nuclear processes converting energy into light. In Figure 5.1 we show
the effect of emission in a ray, where Le(p, ω) denotes the emitted radiance
added to the ray (per unit distance) at point p in direction ω.

The following differential equation denotes the change of radiance due
to emission, assuming that Le (the emitted light) does not depend on the
incoming light Li

1:

dLo(p, ω) = LE(p, ω)dt. (5.1)

Figure 5.1: The emission process increases the radiance along the ray as it
passes through a differential volume with emissive particles.

5.1.2 Absorption

While emission increases the amount of radiance along a ray passing
through a medium, absorption decreases that radiance due to the particles
in the participating media.

Absorption is described by the medium’s absorption cross section (σa),
this coefficient represent the probability density that light is absorbed per
unit distance traveled in the medium. Generally, σa can change depending
on both position p and direction ω, although normally only depends on the
position (Also it is a spectral varying variable). The units of this absorption

1The assumption mentioned earlier, while not always true, remains valid under the
linear optics assumptions made by many offline–render implementations (included our
path tracer).

32

5.1. Volume Scattering Processes

cross section are reciprocal distance (m−1).

Figure 5.2 shows the absorption process along a very short segment of
a ray. If some amount of radiance Li(p, ω) arrives at point p, the exitant
radiance Lo(p, ω) after absorption in a supposed differential volume by a ray
follows the following expression:

Lo(p, ω)− Li(p,−ω) = dLo(p, ω) = −σa(p, ω)Li(p,−ω)dt.

This equation express that the differential reduction in radiance along the
ray, is a linear function 2 of the radiance carried when arriving at point p.

We can solve this differential equation to obtain the integral expresing
the total fraction of light absorbed by the ray

e
∫
d

0
σa(p+tω,ω)dt,

assuming the ray travels a distance d in a direction ω, starting at point
p.

Figure 5.2: The absorption process, reduces the radiance along a ray through
a participating media.

5.1.3 Scattering

As a ray passes through a medium, it may collide and be scattered in
different directions, this effect is called scattering.

This process has two different effect on the radiance carried by the beam.
First, due to some of the radiance being reflected to different directions, it
effectively reduces the radiance existing in a differential region of the ray.
This process is named out–scattering (Figure 5.3). Also, as result of this first
effect, radiance from other beams can be scattered into the current ray. This
effect is called in–scattering(Figure 5.4).

2This is other assumption. The fraction of light absorbed does not vary depending on
the ray’s radiance, instead it is always a fixed fraction

33

Chapter 5. Volumetric Path Tracing

Figure 5.3: The out–scattering process reduces the radiance along a ray as
well as absorption, but contrary to absorption, light that hits particles may
be scattered in another directions.

Out–scattering

The probability of an out–scattering event happening per unit distances
defined by the scattering coefficient (σs). This phenomenon is similar to
absorption, because it reduces the radiance of the ray.

The reduction along a differential length dt due to this effect is:

dLo(p, ω) = −ωs(p, ω)Li(p,−ω)dt

The combined effect of absorption and out–scattering is called attenuation
or extinction, and is denoted as σt:

σt(p, ω) = σa(p, ω) + σs(p, ω).

Related to this coefficients we can define the scattering albedo as

ρ =
σs

σt

,

and describes the probability of scattering (instead of being absorbed) at
a scattering event.

We can also define the mean free path, 1/σt, that gives the average dis-
tance that the ray can travel before interacting with a particle of the medium.

In–scattering

As we have defined, opposed to the out–scattering effect, in–scattering
increases the radiance due to the scatterig from toehr directions (Figure 5.4).

34

5.2. Equation of Transfer

To better explain this process, we will asumme that the separation be-
tween particles is (at least) a few times the lengths of their radii, which allows
us to ignore inter–particle interaction when we are describing scattering. If
we follow this assumption, the phase function p(ω, ω′) (Section 5.3), which
is the analog to the volumetric analog of the BSDF (Section 3.2), defines the
angular distribution of scattered radiance at a point p.

However, the analogy is not exact. As an example, phase functions have
the following constraint, for all ω

∫

S2

p(ω, ω′)dω′ = 1

must be true. With this constraint, phase functions actually define prob-
ability distributions for scattering in a particular direction.

The total radiance per unit distance caused by in–scatering is given by
what we call the source term Ls:

dLo(p, ω) = Ls(p, ω)dt.

This term account for both volume emission and in–scattering in the
following way:

Ls(p, ω) = Le(p, ω) + σs(p, ω)

∫

S2

p(p, ωi, ω)Li(p, ωi)dωi.

If we assume that there are no surfaces in the scene

Figure 5.4: In–scattering process increases the radiance along the beam due
to scattering of light from other directions.

5.2 Equation of Transfer

The Equation of Transfer is the fundamental equation that governs the
nature of light in a medium that emits, absorbs, and scatters radiation.

35

Chapter 5. Volumetric Path Tracing

The Light Transport Equation (Section 3.1) is, indeed, a special case of
the Equation of Transfer with no participating media and specialized scat-
tering from surfaces.

From the source term Ls introduced in Section 5.1.3 and the attenua-
tion coefficient, σt(p, ω), introduced in Section 5.1.3, we can get the integro–
differential3 form of the equation of transfer:

δ

δt
Lo(p + tω, ω) = −σt(p, ω)Li(p,−ω) + Ls(p, ω). (5.2)

If we assume that rays are never blocked and have infinite length (there
are no surfaces in the scene), we can rewrite the previous equation as a pure
integral:

Li(p, ω) =

∫
∞

0

Tr(p
′ → p)Ls(p

′,−ω)dt. (5.3)

Here, the point p′ = p + tω.

In a more generic way, if we have surfaces in the scene (reflecting and/or
emtting light) rays do not necessarilly have infinite light and the surfaces
hitted by the ray affect the radiance of the ray, adding o subtracting. If a
ray coming from point p with direction ω hits a surface at point p0 after a
distance t, then the integral equation fo transfer is

Li(p, ω) = Tr(p0 → p)Lo(p0,−ω) +

∫ t

0

Tr(p
′ → p)Ls(p

′,−ω)dt, (5.4)

where p0 = p + tω is the point on the surface and p′ = p + t′ω represent
the points along the ray (Figure 5.5)

This equation describe all the effect that contribute to the radiance along
the ray. The Lo term give us the emitted and reflected radiance from the
surface, that can be attenuated (the ray transmitted account for this). The
second term of the equation describes the radiance added along the beam as
result of emission and scattering until the ray hits the surface.

3Due to to the integral over the sphere in the source term

36

5.3. Phase Function

Figure 5.5: The incidence radiance is equal to the outgoing radiance coming
from the surface time the transmittance to the surface added to the whole
radiance from all the point in the ray from p to p0.

But, to use in our Volumetric Path Tracer implementation, just as we did
with the LTE in Section 3.1, we want to express the Equation of Transfer as
a sum over paths of scattering events.

Using a similar approach, we can derive a medium–aware path integral,
but the derivation is laborious, so we refer to [Jakob, 2013, Chapter 3] and
Pauly et al. [2000] for derivation.

5.3 Phase Function

In Section 3.2 we introduced the BSDF concept to explain how light in-
teracts with surfaces. Here we introduce the concept of phase function, which
have been developed to explain how light interacts with the particles in me-
dia.

In most naturally occurring media, this phase functionscan be defined by
the angle θ between the two direction ωi and ωo (making them a 1D function,
usually written as p(cos θ)).

We call this type of media isotropic due to their response to incident illu-
mination being locally invariant to rotations. Aside from being normalized,
the phase functions (as the BRDFs) should satisfy that they are reciprocal.
In the isotropic case this is trivial because cos(−θ) = cos(θ).

On the other hand, anisotropic media consist of particles arranged in a
coherent structure. The phase function in this type of media can be a 4D
function of the 2 directions (ωi and ωo). Examples of this are media made of
coherently oriented fibers (as we will see in Chapter 6) or even crystals.

Aside from media, phase functions themselves can be isotropic or anisotropic.
Thus is possible to have an anisotropic phase function in a isotropic medium.

37

Chapter 5. Volumetric Path Tracing

An isotropic phase function describes equal scattering in all direction,
making it independent of the two directions. Due to being normalized, there
is only one function fulfilling this premise:

p(ωi, ωo) =
1

4π

We have implemented this phase function as well as an anisotropic one
for cloth fibers. Our anisotropic phase function model is fully explained in
Section 6.2.

5.4 Homogeneous media

We use the term Homogeneous media to refer those media whose proper-
ties remain the same in their whole domain. Due to this the properties of the
media stay the same in the whole domain so we onlye nee to store them once.

In practice, the limits of and homogeneous media domain are represented
using some kind of boundary geometry, which we will refer as stencil. In our
path tracer, this stencil is implemented as a tagged triangle geometry which
allows us to change from regular path tracing (where we suppose vacuum)
to volumetric path tracing. Also intersecting this stencil geometry allow us
to obtain the maximum distance that a ray can travel through the media.

5.4.1 Sampling homogeneous media

When sampling an homogeneous media we must know that this kind
of media follows an exponential behavior. Thus, we define the sampling
methods for an exponential distribution defined over [0,∞). For f(t) = e−σtt,
it is

t = −
ln(1− ξ)

σt

, (5.5)

with PDF defined as

pt(t) = σte
−σtt. (5.6)

However, σt (the attenuation coefficient) varies depending of the channel
(varies by wavelength), and sampling multiple points in the medium is not

38

5.5. Heterogeneous media

desirable, so a uniform sample is used to select a channel first. Then the
corresponding scalar σi

t is used to sample a distance along the distribution

p̂it(t) = σi
te

−σi
t
t, (5.7)

using the technique in Equation 5.5. The resulting sampling density is
the average of the individual strategies pit:

p̂t(t) =
1

n

n∑

i=1

σi
te

−σi
t
t. (5.8)

The probability of sampling an intersection at t = tmax (the output sten-
cil) is the complement of the probability of generating a medium scattering
event between t = 0and t = tmax. This works out to a probability equal to
the average transmittance over all the channel representing out Spectrum:

psurf = 1−

∫ tmax

0

p̂t(t)dt =
1

n

n∑

i=1

e−σi
t
tmax . (5.9)

Our implementation draws a sample based on this equations. If the sam-
pled distance is before the next intersected primitive, a medium scattering
event is generated a processed. Otherwise, medium interactions are ignored,
and the next intersection event is processed.

5.5 Heterogeneous media

Although we have defined Homogeneous media, many Patitipating media
such as cloth (Chapter 6), clouds and smoke cannot be modeled using this
approach. Due to this, media where the properties vary among the space are
needed to represent such effects.

In practice, this media are represented in a different way. Although we
define the boundaries using the same stencil methods that we use in homo-
geneous media, we need a way to represent how the parameter vary. To
represent this, we use a grid based representation of the parameters, storing
values in the space occupied by the media using a 3D grid of a certain resolu-
tion, where each cell (or voxel) store a value and represent an homogeneous
region of the space (Figure 5.6a).

Depending on the media, a grid with more resolution (more voxels to
store information) will be need in order to a void artifact while rendering.

39

Chapter 5. Volumetric Path Tracing

(a) Voxel representation (b) Final render

Figure 5.6: Example of a grid representation of an Heterogeneous volume,
where each voxel store different values and the final volumetric render using
this representation.

5.5.1 Sampling Heterogeneous Media

When dealing with heterogeneous media, extra effort is needed to deal
with the mediums nature. First we will present the more basic way of sam-
pling heterogeneous media stored in voxel representation, to talk after of
another implementation that improve the performance of the sampling pro-
cess.

Regular tracking

When the spatial variation of the heterogeneous media can be decom-
posed into uniform regions, a technique called regular tracking solves the
heterogeneous media sampling problem by by applying standard homoge-
neous medium techniques to the voxels individually. This technique has the
disadvantage that it becomes costly when the medium is stored using many
voxels.

Ray marching

Other techniques build on a straightforward generalization of the homoge-
neous sampling PDF from Equation 5.6 using a spatially varying attenuation

40

5.6. Performance and Implementation Details

coefficient:

pt(t) = σt(t)e
−

∫
t

0
σt(t′)dt′ , (5.10)

where σt(t) = σt(p+ tω) evaluates the attenuation t along the ray.

The most commonly used method for importance sampling Equation 5.10
is know as Ray marching.

This method approximate the cumulative distribution by subdividing the
range [0, tmax] into a number of subintervals, numerically approximating the
integral in each interval, inverting this discrete representation.

Woodcock tracking

Instead of using a ray marching process to sampling the volumetric data,
we have also implemented the Woodcock tracking algorithm [Woodcock et al.,
1965] (also known as delta tracking) to improve performance, which allow us
to adjust the ray marching step proportionally depending on the densities
found among the path through the volume.

Assuming σt,max (the maximum extinction throughout the medium), each
woodcock tracking iteration i performs a standard exponential step through
the uniform medium:

ti = ti−1 −
ln(1− ξ2i)

σt,max

(5.11)

starting with t0 = tmin. These step process is repeated until we satisfy
one of the two stooping criteria, ti > tmax (we have left the medium without
any interaction) or the loop terminate with probability σt(ti)/σt,max, the lo-
cal fraction of ”real” particles. Deciding between this two criteria consumes
ξ2i, the second random generated per iteration i of the algorithm.

Figure 5.7 shows the difference between delta tracking and the methods
presented earlier.

5.6 Performance and Implementation Details

In this section we explain some implementation details about volumetric
path tracing, focusing in Heterogeneous media.

We also specify some performance details about memory management on
the GPU to store volumetric data.

41

Chapter 5. Volumetric Path Tracing

Figure 5.7: (top) Regular tracking partitions the medium into a number of
homogeneous sub-spaces, relying on standard techniques for dealing with the
regions supposing homogeneous media. (middle) Ray marching partitions the
ray into a number of discrete segments and approximates the transmittance
through each one. (bottom) Woodcock tracking considers a medium ”filled”
with additional ”virtual” particles (in red) until it reaches uniform density.
Image from Novák et al. [2014]

5.6.1 Memory scheduling

Rendering heterogeneous media requires a high amount of memory, due
to the data storage of the grid containing the different data of each of the
voxels of the volume. This problem gets worse if the volume is represented
in a high resolution grid of voxels and the media has a high occupancy. Due
to the memory limitations of the GPU we have mentioned earlier, storing
all the volumetric data in the GPU at the same time becomes impossible in
some cases.

To avoid this limitation, we have developed a scheduling system that sub-
divides the render process in different RenderBatches, that we can render
separately. Each of this batches will only need to upload a subset of the
volume data that will fit in the GPU memory. In order to get this batches,
we perform an adaptative subdivision in screen space, checking the volume
needed for each subdivision. If the memory requirement is bigger than we
can handle the subdivision is split in 2 new ones and the memory requirement
for each one is calculated.

To perform the adaptive subdivision we use a priority queue structure,
ordering the RenderBatches by memory requirement so that we could per-
form the subdivision process before in those whith bigger memory occupancy.
We execute this algorithm starting with the whole screen, so can end with a

42

5.6. Performance and Implementation Details

Figure 5.8: Example of the subdivision process for a example scene.

set of batches that we will render in sequence, resulting in the same output
image as the one we could obtain doing al the render at the same time.

Although this subdivision process solves the memory limitation problem,
it generates a whole new problem. When the ray traveling in the medium
goes outside of the view frustum of the ScreenBatch, we do not have any
volumetric information to use. Also, we do not know if we should have this
information, or the empty voxels are correct.
To solve this problem we have developed a shading method that checks when
paths traveling inside volumetric mediums exit the frustum of their respec-
tive ScreenBatch, we use the adjusted stencil (representing the cloth volume
and its bounds) and simulate an homogeneous media with similar properties
as the heterogeneous media. We repeat this process every-time we left the
view frustum and return to use the heterogeneous model when we come back
to view frustum.

Comparisons between the result generated without performing this solu-
tion and renders where this problem is solved are shown in the result section
(Section 7).

5.6.2 Medium improvements

We also allow multiple medium render, and intersection of different medi-
ums by selecting proportionally to their respective densities which one of the

43

Chapter 5. Volumetric Path Tracing

intersected mediums will be sampled in the woodcock tracking process in
order to obtain a density value.

Due to the limitations in execution time of the GLSL shaders, we cannot
allow our algorithm to iterate indefinitely, but the implementation of the
Woodcock tracking process can result in such type of execution in high den-
sity volumes media. To avoid GPU-driver timeout (and therefore unrecov-
erable crashes) we use the state saving process presented earlier to preserve
the path state after a given number of iteration of the algorithm to avoid
crashing. In the next shader step we can recover all the parameters to con-
tinue the algorithm, reaching the same result as if the algorithm was done in
only one shader execution.

5.6.3 GPU grid implementation

As we mentioned earlier, we cannot implement a sparse second level for
the grid in OpenGL using conventional CPU structures. Due to this, we
need the OpenGL Bindless Textures to implement a sort of pointers to data
in GPU.

Our structure consist on first dense level stored using Shader Storage
Buffer Objects (SSBO) storing the bindless texture handle of 3D textures
representing the second grid level.

Using this implementation we can reach a sparse representation by tag-
ging empty bindless handle value (0 represented in integers of 64 bits), avoid-
ing to generate the 3D texture representing an empty space.

44

Chapter 6

Volumetric Materials: Cloth

As many papers have discussed before, to render cloth in a proper way, a
volumetric representation that allows us to have yarn level detail (at least) is
needed. Due to this fact, implementing volumetric path tracing is mandatory
if we want simulate the appearance of cloth in a realistic way.

To difference the volumetric interactions from regular Path Tracing, where
we suppose perfect vacuum light traveling, between the different surface in-
teractions we use a geometry wrapping the volume space that will not be
rendered, but will be use to know when we need to start a ray marching
process to sampling the medium.

6.1 Cloth Volumes

To storage the volumetric data representing the cloths we want to render
using volumetric path tracing, we have implemented a 2 level grid storage in
a similar way that the one implemented in Jakob [2010] to storage heteroge-
neous media.

This type of storage allow low memory consumption compared to a clas-
sical grid avoiding unnecessary storage due to low occupation.

The original 2 level grid used in this work is implemented in CPU, which
have force us to redesign this type of structure to be used in GPU. A more
detailed description of the implementation is presented in Section 5.6.3.

We use this grid stricture to storage the different parameters needed by
our Fiber Scattering Model (Section 6.2), fiber orientation and optical
density, so we can access with low computing cost to the parameters corre-
sponding a 3D point of the space inside a cloth material.

45

Chapter 6. Volumetric Materials: Cloth

To generate the volumetric data needed to represent real cloth, we have
used a procedural generation model similar to the one presented by Zhao et al.
[2016], starting from spline data generated using realistic cloth simulations.

This data is later voxelized (using a GPU voxelization method based on
Lopez-Moreno et al. [2017]) to produce real volumetric data that we can store
using the 3 level grid structure.

All these techniques combined with our scattering model (Section 6.2)
allow us to have realistic volumetric data of enough resolution to execute
volumetric path tracing achieving realistic results, as we show in our result
section (Section 7)

6.2 Light Scattering for Textile Fibers

Previous papers have proposed phase function models to represent cloth
light interactions. Zhao et al. [2011] proposed a microflake phase function to
render cloth, but it does not represent scattering correctly. Schröder et al.
[2014] presented a phase function derived from a previous one for hair fiber,
which results in non-optimal behaviour, and Aliaga et al. [2017] modeled
light scattering in a more detailed way, including non–cylindrical fibers.

We present a specialized phase function for cloth fiber rendering based
on the phase function model proposed by Khungurn et al. [2015]. As the
original one, our phase function provides an analytic evaluation as well as an
analytic sampling, but we provide a 3 lobe representation instead of 2 lobe,
allowing a more accurate representation of the real phenomena.

This 3 different lobes represent the 3 main sequences of light interactions
happening in fibers:

R lobe Light reflected off the fiber surface. Specular reflection.

TT lobe Light transmitted into the fiber and then immediately out.

TRT lobe Light transmitted into the fiber and reflected internally before
being transmitted out.

Each lobe have different parameters to adjust the base albedo and the
shape of the lobe. Additionally, we can specify the energy transmitted from
one lobe to the next set of lobes.

We use the same parameters as Khungurn et al. [2015], plus additional
parameters to define the extra lobe that we have implemented.

46

6.2. Light Scattering for Textile Fibers

CR The base albedo of the R lobe.

CTT The base albedo of the TT lobe.

CTRT The base albedo of the TRT lobe.

FresnelR The specular reflectance at normal incidence.

FresnelTT Percentage of light transmitted again, once it is transmitted for
the first time.

βR Longitudinal width of the R lobe.

βTT Longitudinal width of the TT lobe.

γTT Azimuthal width of the TT lobe.

βTRT Longitudinal width of the TRT lobe

To ensure energy conservation in our phase function, we sample the func-
tion to calculate the integral for a given parameter combination. Using this
integral, we can normalize the value computed analytically, so the value re-
turned ensures energy conservation.

Although the integral computation have some significant cost, it only
needs to be computed once the parameters have been chosen, allowing us to
avoid further calculations when we are evaluating/sampling the phase func-
tion.

Table 6.1: Different phase function parameter sets tested.

βR βTT γTT βTRT FresnelTT FresnelR

Reference 6.0o 12.0o 220.0o 24.0o 0.85 0.01
Rougher 10.0o 20.0o 220.0o 40.0o 0.85 0.01
Shinier 6.0o 12.0o 220.0o 24.0o 0.85 0.04

For the sampling process we sample each lobe with a probability equal to
the relative weight of that lobe, taking a outgoing direction in one of the 3
possible lobes of the phase function.

Although we cannot analytically sample each lobe, due to the fact that
the Von-Mises distribution does not have an analytic CDF, we decided to
fit a Gaussian distribution (with analytic CDF) to the Von-Mises, so we can

47

Chapter 6. Volumetric Materials: Cloth

sample the CDF analytically and obtain the values of the Von-Mises distri-
bution for each sample taken. This way we avoid to generate tabulated CDFs
that will reduce the performance and result in a bigger memory requirement
for the Path Tracer.

As an example of the expressiveness of our Phase Function we show 3 dif-
ferent configurations of our parameters, changing only the shape parameters
(base albedos stay the same):

(a) Reference (b) Rougher (c) Shinier

Figure 6.1: Slice comparison of the output light at 45o, 0o configuration (θ, φ)
for the parameters in Table 6.1.

(a) Reference (b) Rougher (c) Shinier

Figure 6.2: 3D comparison of the output light at 45o, 0o configuration (θ, φ)
for the parameters in Table 6.1.

48

Chapter 7

Results

In this chapter we show the results of a set of different test scenes ren-
dered using our volumetric path tracer. The scenes contain different lighting
conditions, as well as a wide range of materials, ranging from analytical mod-
els, to measured BRDFs and complex heterogeneous volumes of cloth, also
exploring the differences between some of the techniques implemented. All
the renders shown in this chapter were generated using a computer equipped
with a Intel(R) Core(TM) i7-7700k CPU with 4 cores (3.4 GHz), 32 GB of
RAM and a NVIDIA GeForce GTX 1080 Ti GPU.

7.1 Disney BSDF

As stated in previous chapters, we have implemented the Disney Princi-
pled BRDF, as well as the analytic importance sampling techniques needed
to quickly draw random samples from the this BRDF’s distribution. The
Disney Principled BRDF is currently used in production path tracing of the
animated movies at Walt Disney Animation Studios, due to its capability
to mimic many material appearances in a physically plausible way. It is a
very expressive model, due to its 10 parameters, so that we generated several
renders with varying combinations of such parameters to test our implemen-
tation.

Figures 7.1, 7.2 and 7.3 show the main variations of these parameters and
how they affect the whole appearance of the material. Each column keeps
all the parameters fixed while varying one in isolation subsurface, roughness,
metallic, specular, specularTint, clearcoat, clearcoatGloss, anisotropic, sheen
and sheenTint.

49

Chapter 7. Results

Subsurface Metallic Specular

Figure 7.1: Rendered examples of the Disney Principled BRDF varying its
Subsurface, Metallic and Specular parameters

50

7.1. Disney BSDF

SpecularTint Roughness Sheen

Figure 7.2: Rendered examples of the Disney Principled BRDF varying its
SpecularTint, Roughness and Sheen parameters

51

Chapter 7. Results

SheenTint Clearcoat ClearcoatGloss

Figure 7.3: Rendered examples of the Disney Principled BRDF varying its
SheenTint, Clearcoat and ClearcoatGloss parameters

52

7.2. Measured materials

7.2 Measured materials

Another BSDF implemented our rendering engine is the measured BSDF
presented by Matusik et al. [2003]. This BSDF allows to realistically replicate
the appearance of the measured real–life counterpart. However, it implies
great memory since the data for each of the material have been measured
from the original materials with great accuracy. As an example of the realism
that this BSDF could reach we show an example render using the Gold
Metallic Paint material data provided among the original publication in
Figure 7.4.

Figure 7.4: Example of the Standford dragon using the Gold Metallic
Paint MERL BRDF.

7.3 Cloth materials

One of the main goals of this work was to achieve realistic renderings
of cloth materials thanks to the use volumetric a representation of fabrics.
Also, we aimed to use a expressive model for light scattering in cloth fibers.
In this section we show how our volumetric path tracing can achieve high
quality results when rendering scenes with complex cloth materials. As an
example, in Figure 7.5 we show a 3 different result using three functions
with similar parameters as the one shown in Section 6.2, but using spatially

53

Chapter 7. Results

varying albedo parameter for each lobe.

But, not only phase function model affects the appearance of cloth. We
have tested different procedural cloth patterns, using the same volumetric
model and the same phase function parameters. As Figure 7.7 shows, the
cloth structure really affects the final appearance, although the optical prop-
erties of the fibers (phase function) remains the same. Also, different illumi-
nations create great differences in the resulting image. We have generated
different scenes using the same volumetric model, but changing the environ-
ment map used to obtain different illuminations, obtaining really different
results (Figure 7.8).

(a) Backward (b) Isotropic (c) Forward

Figure 7.5: Example cloth scene rendered using the same light configuration
changing the scattering parameters of our phase function implementation

7.4 Full garments

As we commented in Section 5.6.1, we have implemented a memory sched-
uler that allows us to subdivide the render process to be able to handle bigger
data volumes. We have also commented the need of performing some process
to avoid rendering artifacts when rays travel outside the view frustum. In
such situations, we cannot correctly sample the whole volume due to the lack
of information. In Figure 7.6 we show the result obtained with and without
this improvement.

54

7.4. Full garments

Figure 7.6: Comparison of renders with and without the screen–space sub-
division. Left shows the naive subdivision, which creates artifacts due to
incoherences in transmission along the volume.

Once this problem is solved we can render full garment scenes without
artifacts related to memory limitation problems. We have tested multiple
cloth scenes that do not fit entirely in the GPU if treated naively and that
work perfectly when applying this new subdivision method. We have also
tested the robustness of the system by checking if garments that fit in GPU
without this screen–space subdivision are rendered correctly, and the results
are indistinguishable compared to when rendered using our method. Most of
the results of this test scenes are shown in Figures 7.9, 7.10, 7.11 and 7.12.

55

Chapter 7. Results

Figure 7.7: We have tested how different cloth patterns change the whole
cloth appearance although the yarn material remains the same. Here we
show how 2 different twill patterns (up and down) differ when rendered using
the same scattering parameters.

56

7.4. Full garments

Figure 7.8: Same volumetric model rendered using 2 different environment
maps.

57

Chapter 7. Results

Figure 7.9: Red jersey close–up image generated using our rendering engin

Figure 7.10: Red shirt volumetric render using the model presented in this
Thesis

58

7.4. Full garments

Figure 7.11: Yellow jersey rendered using our volumetric path tracer imple-
mentation close–up render

59

Chapter 7. Results

Figure 7.12: Cloth model with (top) and without (bottom) increased amount
and length of fly–out fibers.

60

Chapter 8

Conclusions and Future Work

In this Master Thesis we have developed a volumetric path tracing im-
plementation based on GPU, specialized in cloth rendering. Despite the fact
that we can simulate very accurate renderings of both volumetric and non–
volumetric materials, many improvements could be made to reduce render
times and increase the quality of the results.
In this chapter we present some of those improvements, and explain how they
would affect our work.

8.1 Improved woodcock tracking

Although we have implemented the Woodcock tracking algorithm, Novák
et al. [2014] presented a new tracking technique based on the calculation of
majorant values. Figure 8.1 show the differences when using their method
instead of classic delta tracking.

(a) Delta tracking (b) Residual ratio tracking

Figure 8.1: Cloud rendered using Woodcock tracking algorithm and residual
ratio tracking.

61

Chapter 8. Conclusions and Future Work

Their tracking technique could be really useful when performing impor-
tance sampling of light on participating media due to their method to eval-
uate transmittance in heterogeneous media. Also, this approach shows good
result compared to classic delta tracking when dealing with complex hetero-
geneous media (such as cloth), so implementing this algorithm could dras-
tically reduce the noise when sampling cloth materials, specially in scenes
with different clothes.

8.2 Correlated media

Classic volumetric render, assume uncorrelated media with a uniform,
random local distribution of particles. Jarabo et al. [2018] have proposed a
framework to render homogeneous media taking into account the correlation
between the scattering particles of the media (Figure 8.2, achieving result
that cannot be rendered with uncorrelated media even changing the param-
eters of the media to try to adjust the model.

Figure 8.2: Jarabo et al. [2018] renders proving that the correlation between
media particles drastically affect the final appearance of homogeneous mate-
rials.

Although this framework does not treat this problem in heterogeneous
media, researching about the possibilities of this model to render heteroge-
neous media as correlated as cloth could end in more realistic render for
many volumetric render of cloth that cannot be modeled using the uncorre-
lated model.

62

8.3. Improved scheduling algorithms

8.3 Improved scheduling algorithms

Although we present some scheduling process to be able to render high
resolution volumetric materials that will not fit at once in GPU memory we
do not perform any scheduling while doing the ray traversal process through
the BVH structure. Implementing some kind of scheduling or ray-packaging,
as many CPU render algorithms do, could improve the performance even
more in GPU due to threads executing similar instructions. This type of
scheduling could also improve the performance of the intersection process,
which usually becomes the bottleneck of the computation for scenes with
high resolution meshes.

However, complex scheduling algorithms cannot be implemented in GLSL
as efficiently as in CUDA, so in order to implement such scheduling systems
we will need to re-implement the path tracer algorithm using CUDA, which
will lead to incompatibility with non NVIDIA systems.

8.4 Improve lighting

Our actual implementation only implements Directional and Environ-
ment map lights (with importance sampling).

Although environment light allow path tracing to generate very realistic
light scenarios, some real–life scenarios imply other kinds of lights (Figure
8.3) that cannot be achieved using environment maps.

(a) Lights illuminating a studio (b) Light bulb

Figure 8.3: Different real–life light types that are not implemented in our
path tracer

Implementing other light types such as triangles (and thus triangle meshes),
quad lights or even disk lights [Guillén et al., 2017] would improve the lighting
situations that we can simulate.

63

Chapter 8. Conclusions and Future Work

8.5 Conclusions

In this Master thesis we have proved, how GPU can be used to implement
offline–render algorithms that have been classically implemented using CPU,
improving their performance thanks to their parallel nature.

Although currently GPU languages are not really optimized to implement
complex algorithms of such nature, technology is evolving to the extent that
allow this kind of processes run faster on the GPU, while new standards for
offline render are appearing for the use of GPUs in offline rendering, such
as OptiX. Due to this, we should expect a progressive evolution of this kind
of hardware facilitate the implementation of complex algorithms, aside from
the ones used in real–time rendering.

On the other side, we have proven that using scattering model for fiber
in cloth rendering allows renderings to achieve a high degree of realism as we
show with our results. It is reasonable to assume that, in the future, more
complex models to describe this types of materials will be researched using
this kind approach producing even realistic results.

64

Bibliography

Carlos Aliaga, Carlos Castillo, Diego Gutierrez, Miguel A Otaduy, Jorge
Lopez-Moreno, and Adrian Jarabo. An appearance model for textile fibers.
In Computer Graphics Forum, volume 36, pages 35–45. Wiley Online Li-
brary, 2017. 7, 8, 46

FO Bartell, EL Dereniak, and WL Wolfe. The theory and measurement
of bidirectional reflectance distribution function (brdf) and bidirectional
transmittance distribution function (btdf). In Radiation scattering in op-
tical systems, volume 257, pages 154–161. International Society for Optics
and Photonics, 1981. 15

Brent Burley and Walt Disney Animation Studios. Physically-based shading
at disney. In ACM SIGGRAPH, volume 2012, pages 1–7, 2012. 26

Ibón Guillén, Carlos Ureña, Alan King, Marcos Fajardo, Iliyan Georgiev,
Jorge López-Moreno, and Adrian Jarabo. Area-preserving parameter-
izations for spherical ellipses. Comput. Graph. Forum, 36(4):179–187,
July 2017. ISSN 0167-7055. doi: 10.1111/cgf.13234. URL https:

//doi.org/10.1111/cgf.13234. 63

T. Hachisuka. Implementing a Photorealistic Rendering System using GLSL.
ArXiv e-prints, May 2015. 8, 20, 21

Pat Hanrahan and Wolfgang Krueger. Reflection from layered surfaces
due to subsurface scattering. In Proceedings of the 20th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
’93, pages 165–174, New York, NY, USA, 1993. ACM. ISBN 0-89791-
601-8. doi: 10.1145/166117.166139. URL http://doi.acm.org/10.1145/

166117.166139. 27

Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. The
sggx microflake distribution. ACM Trans. Graph., 34(4):48:1–48:11, July
2015. ISSN 0730-0301. doi: 10.1145/2766988. URL http://doi.acm.

org/10.1145/2766988. 8

65

https://doi.org/10.1111/cgf.13234
https://doi.org/10.1111/cgf.13234
http://doi.acm.org/10.1145/166117.166139
http://doi.acm.org/10.1145/166117.166139
http://doi.acm.org/10.1145/2766988
http://doi.acm.org/10.1145/2766988

Bibliography

Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.
7, 20, 45

Wenzel Jakob. Robust Monte Carlo Methods for Light Transport Simulation.
PhD thesis, 2013. 37

Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve
Marschner. A radiative transfer framework for rendering materials with
anisotropic structure. ACM Trans. Graph., 29(4):53:1–53:13, July 2010.
ISSN 0730-0301. doi: 10.1145/1778765.1778790. URL http://doi.acm.

org/10.1145/1778765.1778790. 7, 8

Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. A radiative transfer
framework for spatially-correlated materials. ACM Transactions on Graph-
ics, 37(4), 2018. 62

J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional textures.
SIGGRAPH Comput. Graph., 23(3):271–280, July 1989. ISSN 0097-8930.
doi: 10.1145/74334.74361. URL http://doi.acm.org/10.1145/74334.

74361. 8

James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143–150, August 1986. ISSN 0097-8930. doi: 10.1145/15886.15902.
URL http://doi.acm.org/10.1145/15886.15902. 9

Khronos Group. OpenGL, 1992. https://www.opengl.org/. 8

Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve
Marschner. Matching real fabrics with micro-appearance models. ACM
Trans. Graph., 35(1):1:1–1:26, December 2015. ISSN 0730-0301. doi: 10.
1145/2818648. URL http://doi.acm.org/10.1145/2818648. 7, 8, 46

Jorge Lopez-Moreno, David Miraut, Gabriel Cirio, and Miguel A. Otaduy.
Sparse gpu voxelization of yarn-level cloth. Comput. Graph. Forum, 36
(1):22–34, January 2017. ISSN 0167-7055. doi: 10.1111/cgf.12782. URL
https://doi.org/10.1111/cgf.12782. 46

Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Wor-
ley, and Pat Hanrahan. Light scattering from human hair fibers. ACM
Trans. Graph., 22(3):780–791, July 2003. ISSN 0730-0301. doi: 10.1145/
882262.882345. URL http://doi.acm.org/10.1145/882262.882345. 8

Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan.
A data-driven reflectance model. ACM Transactions on Graphics, 22(3):
759–769, July 2003. 29, 53

66

http://doi.acm.org/10.1145/1778765.1778790
http://doi.acm.org/10.1145/1778765.1778790
http://doi.acm.org/10.1145/74334.74361
http://doi.acm.org/10.1145/74334.74361
http://doi.acm.org/10.1145/15886.15902
http://doi.acm.org/10.1145/2818648
https://doi.org/10.1111/cgf.12782
http://doi.acm.org/10.1145/882262.882345

Bibliography

Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental analysis of
brdf models. In Proceedings of the Sixteenth Eurographics Conference on
Rendering Techniques, EGSR ’05, pages 117–126, Aire-la-Ville, Switzer-
land, Switzerland, 2005. Eurographics Association. ISBN 3-905673-23-1.
doi: 10.2312/EGWR/EGSR05/117-126. URL http://dx.doi.org/10.

2312/EGWR/EGSR05/117-126. 29

Jan Novák, Andrew Selle, and Wojciech Jarosz. Residual ratio tracking for
estimating attenuation in participating media. ACM Trans. Graph., 33
(6):179:1–179:11, November 2014. ISSN 0730-0301. doi: 10.1145/2661229.
2661292. URL http://doi.acm.org/10.1145/2661229.2661292. 42, 61

Michael Oren and Shree K. Nayar. Generalization of lambert’s reflectance
model. In Proceedings of the 21st Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’94, pages 239–246, New York,
NY, USA, 1994. ACM. ISBN 0-89791-667-0. doi: 10.1145/192161.192213.
URL http://doi.acm.org/10.1145/192161.192213. 26

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Mor-
ley, Austin Robison, and Martin Stich. Optix: A general purpose ray
tracing engine. ACM Transactions on Graphics, August 2010. 8

Mark Pauly, Thomas Kollig, and Alexander Keller. Metropolis light trans-
port for participating media. In Proceedings of the Eurographics Work-
shop on Rendering Techniques 2000, pages 11–22, London, UK, UK,
2000. Springer-Verlag. ISBN 3-211-83535-0. URL http://dl.acm.org/

citation.cfm?id=647652.732117. 37

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based render-
ing, 2016. http://www.pbrt.org/. 7, 20, 21

Christophe Schlick. An inexpensive brdf model for physically-based render-
ing. Computer Graphics Forum, 13:233–246, 1994. 27

Kai Schröder, Arno Zinke, and Reinhard Klein. Image-based reverse en-
gineering and visual prototyping of woven cloth. IEEE Transactions on
Visualization and Computer Graphics, PP(99), 2014. ISSN 1077-2626. doi:
10.1109/TVCG.2014.2339831. To be presented at Pacific Graphics 2014.
46

B Smith. Geometrical shadowing of a random rough surface. IEEE transac-
tions on antennas and propagation, 15(5):668–671, 1967. 27

67

http://dx.doi.org/10.2312/EGWR/EGSR05/117-126
http://dx.doi.org/10.2312/EGWR/EGSR05/117-126
http://doi.acm.org/10.1145/2661229.2661292
http://doi.acm.org/10.1145/192161.192213
http://dl.acm.org/citation.cfm?id=647652.732117
http://dl.acm.org/citation.cfm?id=647652.732117

Bibliography

TS Trowbridge and Karl P Reitz. Average irregularity representation of a
rough surface for ray reflection. JOSA, 65(5):531–536, 1975. 27

Stanley Tzeng and Li-Yi Wei. Parallel white noise generation on a gpu via
cryptographic hash. In Proceedings of the 2008 Symposium on Interactive
3D Graphics and Games, I3D ’08, pages 79–87, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-983-8. doi: 10.1145/1342250.1342263. URL
http://doi.acm.org/10.1145/1342250.1342263. 22

Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation.
PhD thesis, Stanford, CA, USA, 1998. AAI9837162. 10, 25

E Woodcock, T Murphy, P Hemmings, and S Longworth. Techniques used in
the gem code for monte carlo neutronics calculations in reactors and other
systems of complex geometry. In Proc. Conf. Applications of Computing
Methods to Reactor Problems, volume 557, 1965. 41

Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi Ramamoor-
thi. Physically-accurate fur reflectance: Modeling, measurement and ren-
dering. ACM Trans. Graph., 34(6):185:1–185:13, October 2015. ISSN
0730-0301. doi: 10.1145/2816795.2818080. URL http://doi.acm.org/

10.1145/2816795.2818080. 8

Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. Building
volumetric appearance models of fabric using micro ct imaging. ACM
Trans. Graph., 30(4):44:1–44:10, July 2011. ISSN 0730-0301. doi: 10.
1145/2010324.1964939. URL http://doi.acm.org/10.1145/2010324.

1964939. 46

Shuang Zhao, Fujun Luan, and Kavita Bala. Fitting procedural yarn models
for realistic cloth rendering. ACM Trans. Graph., 35(4):51:1–51:11, July
2016. ISSN 0730-0301. doi: 10.1145/2897824.2925932. URL http://doi.

acm.org/10.1145/2897824.2925932. 46

Arno Zinke and Andreas Weber. Light scattering from filaments. IEEE
Transactions on Visualization and Computer Graphics, 13(2):342–356,
March 2007. ISSN 1077-2626. doi: 10.1109/TVCG.2007.43. URL
http://dx.doi.org/10.1109/TVCG.2007.43. 8

68

http://doi.acm.org/10.1145/1342250.1342263
http://doi.acm.org/10.1145/2816795.2818080
http://doi.acm.org/10.1145/2816795.2818080
http://doi.acm.org/10.1145/2010324.1964939
http://doi.acm.org/10.1145/2010324.1964939
http://doi.acm.org/10.1145/2897824.2925932
http://doi.acm.org/10.1145/2897824.2925932
http://dx.doi.org/10.1109/TVCG.2007.43

	Introduction
	Previous Work
	Path Tracing implementations
	Scattering models for cloth rendering

	Path Tracing on the GPU
	Path integral
	Bidirectional Scattering Distribution Function (BSDF)
	Camera model
	Sampling and Reconstruction
	Stratified jittered sampling
	Reconstruction filter

	Performance and Implementation Details
	Acceleration Structures
	Uniform Random Generation
	State Saving

	Materials
	Diffuse material
	Disney principled BRDF
	Importance Sampling

	Measured Materials

	Volumetric Path Tracing
	Volume Scattering Processes
	Emission
	Absorption
	Scattering

	Equation of Transfer
	Phase Function
	Homogeneous media
	Sampling homogeneous media

	Heterogeneous media
	Sampling Heterogeneous Media

	Performance and Implementation Details
	Memory scheduling
	Medium improvements
	GPU grid implementation

	Volumetric Materials: Cloth
	Cloth Volumes
	Light Scattering for Textile Fibers

	Results
	Disney BSDF
	Measured materials
	Cloth materials
	Full garments

	Conclusions and Future Work
	Improved woodcock tracking
	Correlated media
	Improved scheduling algorithms
	Improve lighting
	Conclusions

	Bibliography

